Maximum likelihood estimation in nonlinear mixed effect models: adaptive Gaussian quadrature by sparse grid sampling

PAGE 2009

St. Petersburg 22-26 June Wan Hui O.Clausen¹, Birgitte B.Rønn¹, Ib M.Skovgaard²

1:Biometrics, Genmab a/s. 2:Department of Basic Sciences and Environment, University of Copenhagen

• Pinheiro and Bates (1995):

Comparison of estimation algorithms, NLME, Laplacian, AGQ and importance sampling

Conclusion: AGQ precise, but less efficient

Compartment model for Theophyline data

$$c_t = \frac{DK_e K_a}{Cl(K_a - K_e)} (e^{-K_e t} - e^{-K_a t})$$

D: DoseKa: Absorption rateKe: Elimination rateCl: Clearance

Theophyline serum concentrations Boeckmann et al (1994)

Time since drug administration (hr)

Maximum likelihood estimation

Maximum likelihood estimation in non-linear mixed effects models

• Non-linear mixed effect model:

 $\underline{Y} = h(\underline{\beta}, \underline{b}) + \underline{\mathcal{E}}$

where <u>Y</u> is the observation vector, *h* is the mean function, possible nonlinear in the fixed parameter vector, $\underline{\beta}$, and the random effect vector, <u>b</u>.

The random effects are assumed to follow a multivariate normal distribution, $\underline{b} \sim N(\underline{0}, \Omega)$, independent of the residual error, $\underline{\varepsilon}$, also assumed to follow a multivariate normal distribution, $\underline{\varepsilon} \sim N(\underline{0}, \Sigma)$

Maximum likelihood estimation in non-linear mixed effects models

• Likelihood function:

$$L(\underline{Y,\beta},\Omega,\Sigma) = \int p(\underline{Y},\underline{\beta},\underline{b},\Omega,\Sigma)d\underline{b}$$
$$= \int p(\underline{Y},\underline{\beta},\Sigma | \underline{b}) p(\underline{b},\Omega)d\underline{b}$$

where *p* is the density function for the relevant normal distributions

• MLE: parameter values of $\underline{\beta}, \Omega, \Sigma$ that maximize the likelihood function

The final integral cannot be solved explicitly, hence approximations is needed, e.g. first order approximation, Laplace or AGQ.

Genmab

Laplace approximation to $\int h(b) p(b) db$

Laplace approximation to $\int h(b) p(b) db$

- The approximation is exact when the random effects occur linearly in the mean function
- The approximation works well if h(b)p(b) is approximately quadratic in b

Adaptive Gaussian Quadrature of h(b)p(b)db

Adaptive Gaussian Quadrature of h(b)p(b)db

• The integral is approximated by a weighted sum:

$$\int h(b) p(b) db = \sum_{i=1}^{n} h(x_i) p(x_i) w_i$$

- Where the x_i, i=1, ..., n are the abscissas and w_i the weight functions. Adaptive Gauss Hermite Quadrature have abscissas equal to roots of Hermite polynomials
- The approximation is exact when h(b)p(b) is a polynomial of degree 2n-1 (or less)

Adaptive Gaussian Quadrature, with 2-dim b and 5 abscissas, of $\int h(b)p(b)db$ (product rule)

 The number of function evaluations grow exponentially with dimension d of b:

	2	3	4	5	10
3	9	27	81	243	59049
7	49	343	2401	16807	0.2*10 ⁹
13	169	2197	28561	371293	138*10 ⁹

- AGQ becomes heavy computationally
- However, not all evaluation points are important for precision

Smolyak's rule

- Old news: Smolyak (1963)
- We follow the tensor product construction by Gerstner and Griebel (2003)
- Example:

Smolyak's level 2 rule for d-dimensions:

$$\int h(b)e^{-\frac{1}{2}b^2}db \approx \sum_{i=1}^d \left\{ h(-\sqrt{3}e_i) + h(\sqrt{3}e_i) \right\} + (1 - \frac{d}{3})h(0)$$

- Weights equals 1/6 for the 2d axial points and 1-1/3 for center
- Exact for polynomials of degree 3 or less

Function evaluation with multivariate parameter

• Number of function evaluations reduced significantly:

	2	3	4	5	10
3	9 <mark>5</mark>	27 7	81 <mark>9</mark>	243 <mark>11</mark>	59049 <mark>21</mark>
7	49 <mark>7</mark>	343 <mark>31</mark>	2401 <mark>49</mark>	16807 <mark>71</mark>	0.2*10 ⁹ 241
13	169 <mark>45</mark>	2197 105	28561 <mark>201</mark>	371293 <mark>341</mark>	138*10 ⁹ 1981

Examples

Theophyline serum concentrations

• Model:

$$c_t = \frac{DK_e K_a}{Cl(K_a - K_e)} (e^{-K_e t} - e^{-K_a t})$$

- Absorption rate, elimination rate and clearance are random
- Smolyak algorithm converged with non-singular covariance matrix of parameter estimates
- Smaller (slightly) residual variance compared to Laplace

Theophyline dataobserved and predicted profiles

Indomethecin data

- observed and predicted profiles

• Model:

$$c_t = A_1 \exp(-rc_1 \cdot time) + B_1 \exp(-rc_2 \cdot time)$$

- A1, log(rc1) and B1 are random
- Smolyak algorithm converged with nonsingular covariance matrix

Indomethecin data

UCIIIIUD

Simulations

Simulation: First-order open compartment model (Theophyline data)

- 500 simulations
- 12 subjects
- 10 concentrations at

t=0, 0.25, 0.5, 1, 2, 3.5, 7, 9, 12, 24h

- Dose=4.5mg
- IKa = 0.5, ICI=-3, IKe = -2.5
- IKa and ICI are allowed to vary randomly, $b_i \sim N(0, \psi)$, where ψ is diagonal, 0.36 and 0.04 respectively

Simulation results (Theophyline data)

500 simulations based on Theophylline data

	lKe	IKa	ICI	psi.lKa	psi.ICI	sigma
True Value	-2.5	0.5	-3	0.6	0.2	0.7
NLME (starting values)	-2.4940	0.4792	-3.0040	0.5799	0.1928	0.6993
sd	0.0403	0.1174	0.0405	0.0853	0.0300	0.0296
Smolyak ^{sd}	-2.5010 0.0407	0.5057 0.1210	-3.0010 0.0410	0.5716 0.1087	0.1935 0.0313	0.6929 0.0361
AGQ sd	-2.5010 0.0404	0.5004 0.1196	-3.0010 0.0406	0.5893 0.0889	0.1952 0.0304	0.6984 0.0296

Serum Concentration of Indomethecin

Simulation: Biexponential model (Indomethacin data)

- 1000 simulations
- 6 subjects
- 11 concentrations at t=0.25, 0.5, 0.75, 1, 1.25, 2, 3, 4, 5, 6, 8h
- $\alpha = 2.8$, lKe1=0.7, $\beta = 0.4$, lKe2=-1.5
- α and 1Ke1 are allowed to vary randomly, b_i ~N(0, ψ), where ψ is diagonal, 0.36 and 0.04 respectively

1000 simulation based on Indomethecin data

	A1	lrc1	A2	lrc2	psiA1	psilrc1	sigma
True value	2.8	0.7	0.4	-1.5	0.6	0.2	0.09
Starting values							
(NLME)	2.806	0.6644	0.3637	-1.6967	0.4975	0.1636	0.08772
sd	0.2701	0.1242	0.0953	0.3856	0.1859	0.0700	0.0089
Smolyak	2.814	0.7122	0.4169	-1.5432	0.5151	0.1920	0.08661
sd	0.2690	0.1335	0.11547	0.35370	0.1712	0.06829	0.008654
AGQ	2.798	0.7039	0.4111	-1.5572	0.4738	0.1817	0.08758
sd	0.2701	0.1311	0.11434	0.35904	0.1828	0.06894	0.008803

Conclusion

Conclusion

- AGQ precise method for MLE in nonlinear mixed effects models
- For multivariate parameters AGQ becomes difficult
- Smolyaks rule reduces the number of function evaluations significant
- The method works well on the examples aswell as in the simulation study

Thank you!

• References:

- Pinheiro, J.C. and Bates, D.M.: Approximations to the log-likelihood function in the nonlinear mixed-effects model. Journal of Computational and Graphical Statistics, Volume 4, Number 1, pages 12-35 (1995)
- Boeckmann, A. J., Sheiner, L. B. and Beal, S. L. (1994), NONMEM Users Guide: Part V, NONMEM Project Group, University of California, San Francisco.
- Smolyak, S.A.: Quadrature and interpolation formulas for tensor products of certain classes of functions, Dokl.Akad.Nauk SSSR 4 (1963) 240-243
- Gerstner, T. and Griebel, M.: Dimension-Adaptive Tensor-Product Quadrature, Computing 71, 65-87 (2003)

